2

Propagation in a cold plasma

2.1 The Appleton—Hartree equation

As mentioned in Section 1.1, for a really cold plasma (T, — 0) the con-
dition (1.1) is no longer valid and all the theory developed in Chapter 1
breaks down. Thus when speaking about cold plasma we will assume that
its temperature is so low that the contributions of thermal and relativistic
corrections to €;; (the terms €f; and €f; in (1.78)) to the process of wave
propagation are small when compared with the contribution of e?j, but at
the same time this temperature is high enough for condition (1.1) to re-
main valid. This definition of a cold plasma obviously depends on the type
of waves under consideration. The cold plasma approximation allows us to
write the dispersion equation for various waves in a particularly simple form
and it has been widely used for the analysis of waves (in particular, whistler-
mode) in the magnetosphere. Some results of plasma wave theory based on
this approximation will be recalled below.

Neglecting the contribution of the terms eﬁj and €; in (1.78) we can
assume €;; = e?j in the expressions for A, B and C' defined by (1.43)—(1.45)
and rewrite them as:

A= Ag = Ssin?0+ Pcos? 6, (2.1)
B = By = RLsin?6 + PS(1 + cos? ), (2.2)
C = Cp = PRL, (2.3)

where index ¢ indicates that the corresponding coefficients refer to a cold
plasma approximation; S, R, L and P are the same as in (1.79). When
deriving (2.1)—(2.3) we took into account only the contribution of electrons
to the process of wave propagation, as was done when deriving (1.78).

36
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In view of (2.1)—(2.3) the cold plasma solution of (1.42) can be written as:
N2 = (By %+ F)/24o, (2.4)

where
F? = (RL — PS)?sin* 0 + 4P2D? cos? 4. (2.5)

From (2.4) it follows that not more than two types of waves can propagate
in a cold plasma in a fixed direction. When w is real then Ny can be either
real (N2 > 0) or imaginary (but not complex), which follows from the fact
that F2 > 0. If Ny is imaginary then the wave cannot propagate; if Ny is
real then the wave propagates without damping or growth.

After some rearrangement equation (2.4) can be rewritten as (Ratcliffe,
1959; Holter & Kildal, 1973):

2X(1 - X)

Ni=1- :
2(1 - X) - Y2sin?0 £ Y /Y2sin?6 + 4(1 — X)2 cos? §

(2.6)

This equation is commonly known as the Appleton-Hartree equation (for
a discussion about this name see Rawer & Suchy, 1976). It can be further
simplified for some limiting values of #, X or Y. For example, for # = 0 and
X > 1 it reduces to:

X
1FY
(for X < 1 the signs before Y in (2.7) are to be reversed; for X = 1 the
cold plasma approximation is no longer valid unless 6 is equal to zero: see
equations (5.2)—(5.5)). In what follows we will be interested in the solution
corresponding to the upper sign in (2.6) in the frequency range Y > 1. In
this case (2.7) further reduces to:

N2=1- (2.7)

N§=Ng =1+ % (2.8)

Waves described by equation (2.8) are known as whistler-mode waves (the

origin of this name will be discussed later in this chapter) and they will be
discussed in detail in the rest of the book.

Some attempts have been made to generalize (2.8) for finite 6 avoiding, at

the same time, returning to the full Appleton—Hartree equation. This was
done by imposing the following conditions:

Y?sin?6 < 2|1 — X]| }

Y2sin* 6 < 4(1 — X)? cos? 6 (29)

known as the quasi-longitudinal approximation (e.g. Stix, 1962).
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Conditions (2.9) seem to allow us to neglect the contribution of the terms
proportional to sin?f and sin*# in equation (2.6) and simplify it to the
equation similar to (2.8) but with Y replaced by Y cos@ (e.g. Stix, 1962;
Helliwell, 1965). However, as was first pointed out by Budden (1983), if
we neglect the term proportional to sin? # in equation (2.6) we should also
assume cos® @ = 1, as the terms proportional to (1 — cos? ) have the same
order of magnitude as those proportional to sin® # unless

X>1 (2.10)

As a result, we can generalize (2.8) for finite # only when condition (2.10)
is valid. When both conditions (2.9) and (2.10) are valid, equation (2.6) for
whistler-mode waves is simplified to:

NZ = N3, =vNZ, (2.11)

where v = I12/92, Ngg = Y//Y cos@ — 1. This equation is the generaliza-
tion of equation (2.8) for finite # provided conditions (2.9) and (2.10) are
valid. The plots of Nggq versus 6 for Y=! = 0.2, 0.4 and 0.6 are shown in
Fig. 2.1. As follows from this figure, Nog > 2 and increases when  increases.
Minimum Nog = 2 is achieved when 6 = 0 and Y ~! = 0.5. This means that
condition (2.10) can in fact be replaced by a less stringent condition:

v > 0.5. (2.12)

In view of (2.10), conditions (2.9) are satisfied for a wide range of  except
in the immediate vicinity of /2. However, equation (2.11) predicts wave
propagation (N& > 0) only when

6 < arccosY ™! = Opo. (2.13)

Moreover, if 6 is close to fro then N§ — oo and €f; in (1.78) can no longer
be neglected when compared with e?j. For these 6 the cold plasma approxi-
mation breaks down altogether.

Also, equation (2.8) can be generalized for # # 0 when condition (2.10)
(or (2.12)) is not necessarily valid but

6] < 1. (2.14)

In view of (2.14) we can expand sin§ and cosf in (2.6) in a Taylor series
with respect to # and write this equation for whistler-mode waves as:

N§ = N§j(1 + ag6?), (2.15)
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Fig. 2.1 Plots of Nyg = Y/VY cos@ — 1 versus 6, the wave normal angle (in radi-
ans), for Y1 = 0.2, 0.4 and 0.6 (figures near the curves). v near the # axis indicate
0 = Oro = arccos Y ! for these Y 1.

where
XY
= 2.16
P= X - (Y 1)’ (2.16)
and Ny is defined by (2.8).
Equation (2.15) is valid when
lagh?| < 1. (2.17)

Condition (2.17) is hereafter considered as the quasi-longitudinal approxi-
mation for the plasma with arbitrary electron density, i.e. when condition
(2.10) (or (2.12)) is not necessarily valid.

Remembering (2.16), condition (2.17) is always violated when X is close
to 1 unless & = 0. Hence, one should be cautious when applying (2.8) to
the interpretation of actual wave data at these X. When X > 1 then a¢ >
0 in the whistler-mode frequency range. Hence, Ng determined by (2.15)
increases with increasing ¢ as was the case with dense plasma (see equation
(2.11) and Fig. 2.1).

Alternatively, if conditions (2.9) and (2.10) (or (2.12)) are valid but we
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are interested in retaining terms of the order of X! (or v—!), then equation
(2.6) for whistler-mode waves is simplified to:

N2 = N3,(1 +dev™), (2.18)
where
Y?2cos? 0 —4Y cosf + Y2 + 2
ac = 1
e 2Y2(Y cosf — 1) ’ (2.19)
and Nyq is defined by (2.11); when deriving (2.18) we assumed that
lac| = lacv Y| < 1. (2.20)

The term a. describes the correction to Nyg due to the finite electron density.
If # = 0 then . simplifies to (Y — 1)/Y2. The same expression could be
obtained from equation (2.8).

Remembering (1.150) and (1.151), equation (2.18) can be generalized so
that the contribution of ions is taken into account as well (Sazhin, 1990a):

Ng = N3;(1 + vt +a,r), (2.21)

where @, = —a.Y?2, r =3, 12 /II? (the summation is assumed over all ion
species; in the case when only the contribution of protons is to be taken into
account then r = m./my, my, is the proton mass),

|arr| < 1. (2.22)

Plots of @, versus 6 and @, versus 8 are shown in Fig. 2.2, for the same Y ~1
as in Fig. 2.1. As follows from Fig. 2.2, d, > 0 and increases with increasing
6. The maximal value of G, = 0.25 is achieved at § = 0 and Y~! = 0.5.
In contrast to d., @ < 0 and || increases with increasing 6 and/or Y 1.
In fact the contribution of ions tends to compensate for the contribution of
finite electron density.

In a similar way to (2.21) we can generalize the expression for the reso-
nance cone angle defined by (2.13) so that the contribution of finite electron
density and ions could be taken into account (Sazhin, 1989a):

2 _ 2 _

Zw 114 Y2 L (2.23)
N? for whistler-mode waves is positive when § < g, and N — oo when
0 — Og.

As can be seen from (2.23) the contribution of ions tends to compensate
for the contribution of finite electron density as was the case in (2.21).

fr = Oro —
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Fig. 2.2 Plots of a. (see equation (2.19)) versus 6 (solid) and &, = —Y 24, versus
(dashed) for Y~! = 0.2, 0.4 and 0.6 (curves indicated). v near the 6 axis indicate
0 = Oro = arccos Y ! for these Y!.

When deriving (2.23) it was assumed that the corrections to g due to
finite v~ and r are small. In the general case of arbitrary v but with the
contribution of ions neglected, the expression for the resonance cone angle
Or can be obtained by equating the denominator of (2.6) to zero. As a result
we obtain:

P(1-Y?)

Or = arcsin .
R vY+4

(2.24)

In the whistler-mode frequency range (Y > 1) expression (2.24) is defined
when P < 0, i.e. when the wave frequency is below the electron plasma
frequency.

Expressions (2.8), (2.11), (2.15), (2.21), (2.23) and (2.24) will be used for
the analysis of different limiting cases of whistler-mode propagation through-
out the whole book. Meanwhile we will consider another parameter which
is also important for the analysis of the properties of whistler-mode waves,
namely the group velocity.
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2.2 Whistler-mode group velocity

The solution of a cold plasma dispersion equation referring to whistler-mode
waves and discussed in the previous section allowed us to determine the wave
refractive index N and, correspondingly, the wave phase velocity v, =
w/k = ¢/N. However, this does not necessarily coincide with the velocity
of energy flow. Without discussing details of the mathematical analysis of
wave packet propagation (see Brillouin, 1960; Suchy, 1972; Anderson, Askne
& Lisak, 1975, 1976; Tanaka, Fujiwara & Ikegami, 1986; Tanaka, 1989; Xu
& Yeh, 1990, for details) we can refer only to the final result of this analysis.
Namely, when the waves are not strongly damped or amplified and the
dispersion is not large then the wave packet, or, in other words, cluster of
wave energy, propagates with the so-called group velocity determined by the
following equation:

vy = dw/dk. (2.25)

This result holds true for most cases of whistler-mode propagation in the
magnetosphere and will be assumed throughout the whole book.

We begin our analysis with the simplest case of parallel whistler-mode
propagation in a dense plasma when N is determined by the equation (2.8)
taken in the limit (2.10) (or (2.12)), or by equation (2.11) taken in the limit
0 = 0. After some straightforward algebra we obtain the following expression

for vy (which in this case is directed along N, i.e. parallel to the magnetic
field):

2c(Y —1)3/2

— v (2.26)

Vg = Vg0 =
where v is the same as in (2.11).

As follows from (2.26), vy approaches zero when either w — 0 (Y — 00)
or w— (Y — 1). (Strictly speaking vq never reaches zero in either case as
the contribution of ions and finite electron temperature cannot be neglected
when w — 0 and w — $ respectively: see Section 4.3). Hence, we can
expect vy to be maximal for an intermediate frequency determined from the
condition:

dv,/dY = 0. (2.27)
In view of (2.26) condition (2.27) can be rewritten as:

c(Y —1)Y/2

N (A4-Y)=0. (2.28)
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The obvious solution of (2.28) in the range 1 < Y < o0 is Y = 4 or
w = 0.259). Having substituted this solution into (2.26) we obtain:

Vg =1 = 3—\/?-)6 ~ 0.65¢ (2.29)
g gmax — 8 \/17 \/17 : .
This maximal whistler-mode group velocity is manifested in the minimal
group delay time for whistler-mode waves propagating from one hemisphere
to another, as can be seen from whistler dynamic spectra shown in Fig. 1.
This group delay time can be calculated from the equation:

+Sion d
ty = v—j (2.30)

—Sjon
where the integration is assumed along the magnetic field line between the
opposite hemispheres; in the simplest model of a cold dense plasma vy is
defined by (2.26). As follows from (2.30) and (2.26) the main contribution
to the integral in equation (2.30) comes from the part of the integration path
where €2 is minimal, i.e. from the vicinity of the magnetospheric equator.
Calculation of this integral for realistic models of electron distribution in the
magnetosphere leads us to the result that ¢y is minimal when w ~ 0.4Q,,
where (¢4 is the modulus of electron gyrofrequency at the magnetospheric
equator (Carpenter & Smith, 1964; Park, 1972). Thus reading the frequency
at which tg is minimal, w, (nose frequency), from a whistler spectrogram
(see e.g. Fig. I) we can determine the field line along which the whistler prop-
agates. For given models of electron density distribution along the field lines
and magnetic field (e.g. dipole field), t4 at the nose frequency depends on
electron density at the magnetospheric equator (neq). Thus direct measure-
ments of t; allow us to estimate this density. Alternatively, measurements
of wy, at different moments of time allow us to get information about the
motion of magnetic field tubes in the magnetosphere, and eventually about
the large-scale electric field Fy therein. Practical diagnostics of these param-
eters with the help of whistlers appears to be not so straightforward. Some
particular problems related to this diagnostics will be discussed in Section
9.1. Meanwhile we shall consider other properties of v4 in some more detail.

Using (2.21), expression (2.26) for v, can be generalized so that the contri-
bution of finite electron density and ions can be taken into account (Sazhin,
Smith & Sazhina, 1990):

vg = vgo(1 + bev ™t + byr), (2.31)
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where vgg is determined by (2.26),

= (4-3Y)(Y —-1)
b = VE , (2.32)
. 1-Y
b, = ——. 2.33
_ (2:33)
When deriving equation (2.31) it was assumed that:
lbor 1 < 1
- 2.34
|brr| <1 (2:34)

(cf. conditions (2.20) and (2.22)).

As follows from (2.31) the contribution of ions cannot be neglected when
Y is sufficiently large. Thus, this equation is not valid for these Y either (see
the discussion following (2.26)). b, < 0 when Y ~! < 0.75 and b, > 0 when
075 <Yl <1 |I~)C| achieves its maximum |I~)c|max ~ 0.19 when Y ! =
6/(14 + v/52) ~ 0.28. |b,| monotonically decreases when ¥ ~! increases.

When 6 # 0 the direction of v, does not, in general, coincide with the
direction of k. In this case v4 can be presented in the form (Stix, 1962):

ak| * “°Tk| 68’

where e, and ey are the unit vectors in the directions parallel and perpendic-
ular to k respectively, but coplanar with v, and k. The angles are hereafter
assumed positive if measured in a clockwise direction.

Restricting our analysis to whistler-mode propagation in a cold dense
plasma and neglecting the contribution of ions, we can write the dispersion
equation in the form (2.11). This equation can be solved with respect to w
and written as:

vy = en (2.35)

c2k?Q cos @
e T T (2:36)
In view of (2.36), equation (2.35) can be rewritten as:
Vg = Vgk€k + Ug0€s, (2.37)
where

2¢(Y cosf — 1)3/2
Yok = VVY2cos (2.38)
cvVeos6-1, . (2.39)

Vgp = — NG
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Alternatively the expression for v4 can be presented as:

Vg = Vg€ +VgL€L, (2.40)
where
- cVY cosf — 1(Y cos?8 — 2cos§ +Y) (2.41)
gl = VvY2cos6 ’ ’
VY cosf — 1sinf(Y cosf — 2)
VgL = — , (2.42)
VY cosé

e|| is the unit vector in the direction parallel to the magnetic field (z axis),
and e is the unit vector in the z direction (as in Chapter 1, k is supposed
to lie in the (z, z) plane; 0 < 0 < 7/2).

From (2.38) and (2.39) or (2.41) and (2.42) we obtain the expression for
the absolute value of vg4:

cv
|’Ug| = \/—%, (2.43)
where
- VY cosf—1 2 2.2
’Ug = W\/4(Y C059 — 1) + Y Sin 9 (244)

Plots of 4 versus § are shown in Fig. 2.3 for the same Y ! asin Figs. 2.1
and 2.2. As follows from this figure, v, decreases with increasing 6 for any
particular value of Y ~! until the cold plasma approximation breaks down
for 6 close to ORg.

As follows from (2.42), vg; = 0 when

0 = 6o = arccos(2/Y), (2.45)

which means that the whistler-mode group velocity for this particular €
is directed parallel to the magnetic field. This property of whistler-mode
propagation seems to have been first noticed by Gendrin (1960) and so the
angle 6o is known as the Gendrin angle. This angle is obviously defined only
for w < Q/2. At w > Q/2, as well as at w < /2 and 0o < 0 < Ogp (see
(2.13)), vg1 < 0 which means that the component of whistler-mode group
velocity perpendicular to the external magnetic field is oppositely directed
with respect to the corresponding component of k (k). When 6 approaches
Oro, then |vy| — 0. Whistler-mode waves in a cold dense electron plasma
cannot propagate at 8 > 6gg. In the case when the contribution of finite
electron density and ions is to be taken into account, 8 gg should be replaced
by 6r defined by (2.23) or (2.24). If § < 6o then vy > 0 and so vy is
parallel to k).
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Fig. 2.3 Plots of 9, (see equation (2.44)) versus 6 for Y~! = 0.2, 0.4 and 0.6 (curves
indicated). v near the 6 axis indicate # = g = arccosY ~! for these Y 1.

In many practically important cases of whistler-mode propagation we are
interested not only in the value of |v4| but also in the direction of v, with
respect to k or By. The corresponding angles between k and v, (measured
from k to vg) (6,) or between By and v (1) = 0+6,) can be determined from
the relatively simple equations which will be considered below. In particular,
from (2.35) it follows that:

tanf, = 10w, 0w 10N

_low 0w 16N 2.
K90 3)k] = "N 96 (2.46)

Expression (2.46) allows a rather simple geometrical interpretation: v, is
perpendicular to the surface N(6). When deriving this expression we made
no assumptions about the wave dispersion equation and so this expression
can be applied to any type of plasma wave, not necessarily whistler-mode
waves.

Having substituted (2.11) into (2.46) we obtain:

8y = 640 = —arctan[Y sin6/(2(Y cosf — 1))], (2.47)

¥ =19 = 6 — arctan [Y sin6/(2(Y cosf — 1))]. (2.48)
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Fig. 2.4 Plots of 640 (see equation (2.47)) versus € (dashed) and g (see equation
(2.48)) versus 6 (solid) for Y ! = 0.2, 0.4 and 0.6 (curves indicated). v near the 8
axis indicate 8 = Oro = arccos Y ! for these Y 1.

As follows from (2.48), 19 = 6+640 = 0 when 6 = 0o (see expression (2.45))
which agrees with the results of the analysis of (2.42). Also in agreement with
the previous results we can see from (2.48) that 9o <0 when 1 <Y <2 or
Y > 2 and 6 > fgg, and 19y > 0 when Y > 2 and 0 < O¢g. These properties
of the angle ¥y follow from Fig. 2.4, where we show the plots 1) versus
§ and 640 versus 6. As follows from this figure, 64 is always negative and
|8g0| increases with increasing # and Y ~!. As to 1y, its behaviour appears
to be different for Y1 > 0.5 and Y~ ! < 0.5. In the first case it is always
negative and |ty| increases when # and/or Y ! increase. In the second case
it is positive and first increases with increasing # then reaches its maximum
and then decreases with increasing # reaching 19 = 0 at 8 = 6gg. If 8 > O
then vy < 0. If @ = 0 then ¥, = 0. If § approaches fgy = arccosY ! then
640 — m/2 and 9 — 6 — 7/2. Thus for the resonance cone whistler-mode
wave normal angle vy L N.

In the limit Y > 2 expression (2.46) is simplified to:

40 = —arctan (0.5tan6). (2.49)
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In view of (2.48) and (2.49) we obtain:

tanf +tanfy,o  0.5tan@

t = = .
an g 1—tanftanfg 1+0.5 tanZ 6

(2.50)

As follows from (2.50), ¥9 — 0 when # — 0 or when § — 7/2. Thus we can
expect that 1p should attain its maximal value for an intermediate value of
8. The value of 6 at which 9 is maximal follows from the equation:

v _ (2.51)
In view of (2.50) this equation has a solution:
0 = 6,0 = arctanv'2 = 54.74° = 0.955rad. (2.52)
Substituting (2.52) into (2.50) we obtain:
Y(0s0) = o = arctan 0.25v/2 = 19.47° = 0.340rad. (2.53)

That the whistler-mode group velocity at low frequencies does not deviate
from the magnetic field by more than about 19.5° was first discovered by
Storey (1953). Hence, the angle ¥50 is known as the Storey angle.

The concept of the Storey angle can be generalized to the case when Y
is above but not well above 2, when 6,9 and s are determined by the
following equations:

V1-Y-2
fs0 = arccos {Y‘l + T} ’ (2.54)
Y sin6 0
=05 — ® . 2.
P50 0 — arctan [2(Y - 1)] (2.55)

The plots of 05 versus Y ! and 159 versus Y ~! are shown in Fig. 2.5. In the
same figure we have shown for comparison the plot —¢go = —(6go —7/2) =
—(arccosY ™! — 7/2) versus Y ~1. The latter plot describes the direction of
whistler-mode group velocity at § = 6prg. All the plots are shown only for
Y ! < 0.5 when 05 and 0 are determined (cosfs < 1).

As follows from Fig. 2.5, ¥4 and s are maximal when Y ~! — 0, while
WRo is close to zero for these Y ~1. An increase of Y ~! is accompanied by a
decrease in both 14 and 6,0 until they reach zero at Y ! = 0.5. The values
of —1ro increase almost linearly with increasing Y ~! in the same frequency
range. At a certain Y ~! slightly below 0.2, 9,0 = —%ro. This means that the
deviation of the direction of whistler-mode group velocity from the direction
of magnetic field By is mainly controlled by v at Y ™! < 0.2 and by ¥rg
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Fig. 2.5 Plots of 6, (see equation (2.54)) versus Y ~! (dashed), o (see equation
(2.55)) versus Y ! (solid) and —9ro = 7/2 — arccosY ! versus Y ! (dashed—
dotted).

at Y ! > 0.2. Note that the values of 159 determined by (2.55) correspond
to the maxima of ¥ in Fig. 2.4.

In the case when finite electron density and the contribution of ions is
taken into account, (2.48) can be generalized to:

% =10+ A~ + A,r, (2.56)

where
(Y2 —2+2Y cos — Y?cos? §)sinf

Ac= Y(~Y2 -4+ 8Y cosf — 3Y2cos?9)’ (2.57)

A, = -Y?A.. (2.58)

Plots of A, versus 8 and A, versus # are shown in Fig. 2.6. As follows
from this figure, A, is always negative and |Ac| increases with increasing 6
and/or Y~1. A, is always positive and increases with increasing  and/or
Y ~1. Thus the effects of finite electron density and the contribution of ions
tend to compensate for each other as was the case in evaluating Ny (see
equation (2.21) and Fig. 2.2).
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Fig. 2.6 Plots of A, (see equation (2.57)) versus @ (solid) and A, (see equation
(2.58)) versus 6 (dashed) for Y~! = 0.2, 0.4 and 0.6 (curves indicated). A near the

0 axis indicate § = fgg = arccos Y ™! for these Y 1.

In view of (2.56) expressions (2.52) and (2.53) are generalized to (Sazhin,

1990a):
0s = 930 + A93a
¢s = ¢30 + A¢3a

where
A = Abv~ ! + Ab,.gr,

~ (Y2 —1)(5Y cosfs — 8)
Ab.s = - J
9Y3sinfso(1 — Y cosfs)

Aérs = _Aéch2a
Ayg = A1+ Ay,r,

_ (Y2 —242Y cosfyp — Y2 cos?y 0) sinfsp

A, =
“ T Y(—Y2 -4+ 8Y cosflsy — 3Y2cos2fy)

A1'3 = _Y2Acs-
50 and 15 are the same as in (2.54) and (2.55).

(2.59)
(2.60)

(2.61)
(2.62)

(2.63)

(2.64)
(2.65)

(2.66)
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In a similar way to (2.59), finite electron density and ion effects change the
Gendrin angle defined by (2.45) so that the whistler-mode group velocity is
directed along the magnetic field when (Sazhin, 1988b, 1990a):

Oc = 0go + Abg, (2.67)

where

Abg = Ab.gv~t + Abpgr
Abeg = (2-Y?) J(Y2/Y2—4) 3. (2.68)
Abpg=—-(2-Y2)//Y2 14

As was the case with Or (see equation (2.23)) the corrections to fgo due
to the contribution of finite electron density and the effect of ions tend to
compensate each other.

The corrections to g due to the contribution of finite electron density
and ions determined by (2.23) result in the corresponding corrections to
1R = Or — m/2. The corrections to the angles 859, 8o and s due to finite
electron density and contribution of ions will be considered in more detail
in Chapters 5 and 6 where we compare them with the corresponding correc-
tions due to finite electron temperature and anisotropy.

2.3 Whistler-mode polarization

Whistler-mode dispersion and group velocity considered in the previous sec-
tions are important parameters for the study of the propagation of these
waves in any realistic, and, in particular, magnetospheric plasma. However,
they give us no information about the internal structure of the waves (polar-
ization) and the physical background of their propagation. None of these as-
pects of whistler-mode theory seems to be of minor importance. Knowledge
of whistler-mode polarization is essential for the study of the interaction of
these waves with energetic electrons or for the determination of their wave
normal angle based on the measurements of wave field components (see e.g.
Sazhin, Walker & Woolliscroft, 1990a). Analysis of the physical background
of whistler-mode propagation allows us to understand the process of wave
propagation not in terms of the formal solution of the corresponding wave
dispersion equation but rather in terms of the energy exchange between
electric and magnetic fields of the wave and the electron current. A good
feeling for this process would also contribute to a clearer understanding of
the physical background of the process of whistler-mode electron interaction
in general. Whistler-mode polarization in a cold plasma will be considered



